Lecture 13

The group SU(2)

The Lie group SU(2) consists of all complex (2×2) -matrices A such that $A\bar{A}^{\top} = E$ and det A = 1. As a manifold, it can be identified with the 3-sphere S^3 as follows: Any matrix $A \in SU(2)$ is invertible, therefore, the condition $A\bar{A}^{\top} = E$ can be rewritten in the form $\bar{A}^{\top} = A^{-1}$. If

$$A = \begin{pmatrix} a & b \\ u & v \end{pmatrix}$$
 then $\bar{A}^{\top} = \begin{pmatrix} \bar{a} & \bar{u} \\ \bar{b} & \bar{v} \end{pmatrix}$ and $A^{-1} = \begin{pmatrix} v & -b \\ -u & a \end{pmatrix}$,

so the condition $\bar{A}^{\top} = A^{-1}$ is equivalent to $v = \bar{a}$ and $u = -\bar{b}$. Thus any $A \in SU(2)$ is of the form

$$A = \begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix}$$
 with $a, b \in \mathbb{C}$, $\det A = |a|^2 + |b|^2 = 1$.

This provides the identification

$$SU(2) = \{ (a, b) \in \mathbb{C}^2 \mid |a|^2 + |b|^2 = 1 \} = S^3.$$

On the other hand, SU(2) can be identified with the Lie group Sp(1) of unit quaternions. Recall that the norm |q| of a quaternion $q = x + yi + zj + wk \in \mathbb{H}$ is defined by the formula $|q|^2 = x^2 + y^2 + z^2 + w^2$, or by $|q|^2 = q\bar{q}$ where $\bar{q} = x - yi - zj - wk$. One can easily check that |pq| = |p||q|. The group Sp(1) consists of all quaternions q with |q| = 1. Since $|x + yi + zj + wk|^2 = x^2 + y^2 + z^2 + w^2$, the group Sp(1) is topologically a 3-sphere. The identification Sp(1) = SU(2) at the level of Lie groups is given by the formula

$$a + bj \mapsto \begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix}. \tag{13.1}$$

The unit quaternions 1, i, j, k are identified via (13.1) with the following matrices:

$$1 = E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad i = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad j = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad k = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.$$

Let $U(1) = S^1$ be the group of unit complex numbers. Then the identification (13.1) provides a canonical inclusion $U(1) \rightarrow SU(2)$ such that

$$e^{i\varphi} \mapsto \left(\begin{array}{cc} e^{i\varphi} & 0 \\ 0 & e^{-i\varphi} \end{array} \right).$$

Theorem 13.1. The group $U(1) \subset SU(2)$ is a maximal commutative subgroup in SU(2). All other maximal commutative subgroups in SU(2) are of the form $C^{-1} \cdot U(1) \cdot C$ where $C \in SU(2)$.

This is an easy exercise involving the quaternions. We refer to the elements of $U(1) \subset SU(2)$ as complex numbers.

The trace of a matrix defines a function tr: $SU(2) \rightarrow [-2, 2]$, $A \mapsto tr A$. Note that $\pm E$ are the only two matrices in SU(2) with trace ± 2 , the rest of the group satisfies -2 .

Theorem 13.2. Two matrices, A and A', in SU(2) are conjugate if and only if tr A = tr A'.

Proof. The \Rightarrow direction is obvious. Consider a matrix $A \in SU(2)$ as a linear operator on \mathbb{C}^2 . Since \mathbb{C} is algebraically closed, A has an eigenspace with eigenvalue $\lambda \in \mathbb{C}$. Choose a unit vector $\psi = (x, y)$ in this eigenspace, and let

$$C = \begin{pmatrix} x & -\bar{y} \\ y & \bar{x} \end{pmatrix} \in SU(2)$$
 so that $C \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$

then

$$C^{-1}AC\begin{pmatrix} 1\\0 \end{pmatrix} \doteq \begin{pmatrix} \lambda\\0 \end{pmatrix}$$
 or $C^{-1}AC = \begin{pmatrix} \lambda&\alpha\\0&\beta \end{pmatrix}$

for some α , $\beta \in \mathbb{C}$. Since $C^{-1}AC \in SU(2)$, we have that

$$C^{-1}AC = \begin{pmatrix} \lambda & 0 \\ 0 & \bar{\lambda} \end{pmatrix}$$
 with $\det C^{-1}AC = |\lambda|^2 = 1$.

Thus any matrix $A \in SU(2)$ can be conjugated in SU(2) to a matrix of the form

$$\begin{pmatrix}
e^{i\varphi} & 0 \\
0 & e^{-i\varphi}
\end{pmatrix}$$
(13.2)

whose trace equals $2\cos\varphi$. The trace uniquely defines the angle φ up to sign. Since

$$\left(\begin{array}{cc} e^{-i\varphi} & 0 \\ 0 & e^{i\varphi} \end{array}\right) = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{cc} e^{i\varphi} & 0 \\ 0 & e^{-i\varphi} \end{array}\right) \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)$$

we are finished. \Box

In the quaternionic language, this theorem asserts that any unit quaternion is conjugate to a complex number $e^{i\varphi}$, $0 \le \varphi \le \pi$. Thus, the conjugacy classes in SU(2) are in one-to-one correspondence with the sets $\operatorname{tr}^{-1}(c)$ with $-2 \le c \le 2$. The equation

$$\operatorname{tr}\left(\begin{array}{cc} a & b \\ -\bar{b} & \bar{a} \end{array}\right) = c \tag{13.3}$$

is equivalent to the equation $2 \operatorname{Re} a = c$. The latter defines a hyperplane in $\mathbb{R}^4 = \mathbb{H}$ whose intersection with $\mathrm{SU}(2) = S^3 \subset \mathbb{R}^4$ is $\mathrm{tr}^{-1}(c)$. Thus $\mathrm{tr}^{-1}(c) = S^2$ if -2 < c < 2, and $\mathrm{tr}^{-1}(-2) = \{-E\}$, $\mathrm{tr}^{-1}(2) = \{E\}$. Schematically, the conjugacy classes in $\mathrm{SU}(2)$ can be pictured as the vertical line segments in Figure 13.1, each segment representing a copy of S^2 , which intersects the circle U(1) of unit complex numbers in exactly two points $e^{i\varphi}$, unless $e^{i\varphi} = \pm 1$.

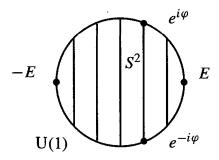


Figure 13.1

At the level of linear spaces, the Lie algebra $\mathfrak{su}(2)$ of the group SU(2) can be identified with the tangent space at 1, so $\mathfrak{su}(2) = T_1 SU(2)$. To describe $\mathfrak{su}(2)$ in terms of matrices, we consider the exponential map $\exp: T_1 SU(2) \to SU(2)$ given by $\alpha \mapsto e^{\alpha}$. Then $\alpha \in \mathfrak{su}(2)$ if and only if $\exp(\alpha) \in SU(2)$, which implies the following:

$$\det e^{\alpha} = e^{\operatorname{tr} \alpha} = 1 \Rightarrow \operatorname{tr} \alpha = 0,$$
$$\overline{(e^{\alpha})}^{\top} = (e^{\alpha})^{-1} \Rightarrow \alpha + \bar{\alpha}^{\top} = 0.$$

Thus, $\mathfrak{su}(2)$ is the 3-dimensional linear space of skew-hermitian matrices with zero trace. All such matrices are of the form

$$\alpha = \begin{pmatrix} ia & b \\ -\bar{b} & -ia \end{pmatrix}, \quad a \in \mathbb{R}, \quad b \in \mathbb{C}.$$

If b = u + iv with $u, v \in \mathbb{R}$ then

$$\begin{pmatrix} ia & u+iv \\ -u+iv & -ia \end{pmatrix} = a \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} + u \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} + v \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

corresponds to the quaternion ai + uj + vk. Therefore, $\mathfrak{su}(2)$ can be thought of as consisting of purely imaginary quaternions. The Lie algebra structure on $\mathfrak{su}(2)$ is given by the Lie bracket

$$[\alpha, \beta] = \alpha\beta - \beta\alpha. \tag{13.4}$$

Theorem 13.3. The exponential map provides a diffeomorphism

$$\exp\colon B_{\pi}(0)\to \mathrm{SU}(2)\setminus\{-E\}$$

where $B_{\pi}(0) \subset \mathfrak{su}(2)$ is the open ball of radius π centered at the origin.

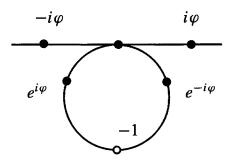


Figure 13.2

Proof. As $e^{g\alpha g^{-1}} = ge^{\alpha}g^{-1}$ we only need to show that the map $\exp:(-i\pi, i\pi) \to S^1 \setminus \{-1\}, i\varphi \mapsto e^{i\varphi}$, is a diffeomorphism. The latter is obvious, see Figure 13.2. \square

Remark. The following is a useful formula for evaluating the exponential map. Let q be a purely imaginary quaternion of unit length, so that Re q = 0 and $|q|^2 = 1$. Then, for any real number θ ,

$$e^{q\theta} = \cos\theta + q \cdot \sin\theta.$$

This can be seen as follows. Since Re q=0, there exists a unit quaternion u such that $q=uiu^{-1}$. Then

$$e^{q\theta} = e^{uiu^{-1}\theta} = e^{u(i\theta)u^{-1}} = ue^{i\theta}u^{-1} = u(\cos\theta + i\sin\theta)u^{-1} = \cos\theta + q\cdot\sin\theta.$$

The tangent space $T_g SU(2)$ at $g \in SU(2)$ can be identified with the image of $\mathfrak{su}(2)$ under left translation by g:

$$(L_g)_*(SU(2)) = T_g SU(2),$$

where $L_g(u) = g \cdot u$.

Example. The space T_i SU(2) consists of the matrices of the form

$$i\begin{pmatrix}ia&b\\-\bar{b}&-ia\end{pmatrix}=\begin{pmatrix}i&0\\0&-i\end{pmatrix}\begin{pmatrix}ia&b\\-\bar{b}&-ia\end{pmatrix}=\begin{pmatrix}-a&ib\\i\bar{b}&-a\end{pmatrix}.$$

The group SU(2) acts on itself by conjugation,

$$A \mapsto Ad_A \colon SU(2) \to SU(2), \quad Ad_A(B) = ABA^{-1}.$$

For any A, the derivative d_1 Ad_A of Ad_A at 1 gives an action of SU(2) on its Lie algebra, called again Ad_A,

$$A \mapsto \mathrm{Ad}_A : \mathfrak{su}(2) \to \mathfrak{su}(2), \quad \mathrm{Ad}_A(\alpha) = A\alpha A^{-1}.$$

Note that Ad_A is a Lie algebra homomorphism with respect to the bracket (13.4). Thus we have a homomorphism

Ad:
$$SU(2) \rightarrow Aut(\mathfrak{su}(2)), A \mapsto Ad_A$$
. (13.5)

The derivative of this map at $1 \in SU(2)$ can be computed as follows: choose $\alpha \in \mathfrak{su}(2)$, then, up to order ε^2 ,

$$Ad_{1+\varepsilon\alpha}(\beta) = (1+\varepsilon\alpha)\beta(1-\varepsilon\alpha) = \beta + \varepsilon(\alpha\beta - \beta\alpha).$$

Denote by ad_{α} : $\mathfrak{su}(2) \to \mathfrak{su}(2)$ the operator $ad_{\alpha}(\beta) = [\alpha, \beta]$, then $Ad_{1+\epsilon\alpha}(\beta) = (1 + \epsilon ad_{\alpha})(\beta)$ up to order ϵ^2 . Thus, $(d_1 Ad)(\alpha) = ad_{\alpha}$.

Theorem 13.4. The map (13.5) is well-defined as a Lie group homomorphism $SU(2) \rightarrow SO(3)$. It is the universal (double) cover of SO(3), hence $\pi_1 SO(3) = \mathbb{Z}/2$.

Proof. The map (13.5) is a homomorphism; Ad(AB) = Ad(A) Ad(B) because $Ad_{AB}(x) = ABx(AB)^{-1} = A(BxB^{-1})A^{-1} = Ad_A Ad_B(x)$. Since $\mathfrak{su}(2) = \mathbb{R}^3$ as a linear space, one can think of $Aut(\mathfrak{su}(2))$ as a subgroup of $GL_3(\mathbb{R})$. Then the map (13.5) is well-defined as a homomorphism $Ad: SU(2) \to GL_3(\mathbb{R})$.

The Euclidean dot-product in $\mathbb{R}^3 = \mathfrak{su}(2)$ can be described by the formula

$$u \cdot v = -\frac{1}{2} \operatorname{tr}(uv) = -\operatorname{Re}(uv)$$

depending on the realization of $\mathfrak{su}(2)$ by either matrices or quaternions. One can easily check that Ad_A preserves the dot-product:

$$(\operatorname{Ad}_{A} u) \cdot (\operatorname{Ad}_{A} v) = -\frac{1}{2} \operatorname{tr}(AuA^{-1} AvA^{-1})$$
$$= -\frac{1}{2} \operatorname{tr}(uv) = u \cdot v.$$

Therefore, $Ad(SU(2)) \subset O(3)$, the orthogonal group of \mathbb{R}^3 . Since SU(2) is connected, the image of SU(2) should belong to the connected component of the identity in O(3), that is, to SO(3).

The map $SU(2) \to SO(3)$ is surjective. Each matrix from SO(3), thought of as acting on \mathbb{R}^3 , is a product of rotations about the coordinate axes. Thus to show surjectivity we only need to show that the matrix

$$R_{x} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \psi & -\sin \psi \\ 0 & \sin \psi & \cos \psi \end{pmatrix}$$

of rotation about the x-axis through an angle ψ belongs to the image of Ad. The rotations with respect to the other two coordinate axes can be handled similarly. Let $\varphi = \psi/2$ and

$$A = \left(\begin{array}{cc} e^{i\varphi} & 0\\ 0 & e^{-i\varphi} \end{array}\right)$$

)

then

$$\begin{split} \operatorname{Ad}_A(i) &= e^{i\varphi} i e^{-i\varphi} = i, \\ \operatorname{Ad}_A(j) &= e^{i\varphi} j e^{-i\varphi} = e^{2i\varphi} j = \cos \psi \cdot j + \sin \psi \cdot k, \\ \operatorname{Ad}_A(k) &= e^{i\varphi} k e^{-i\varphi} = e^{2i\varphi} k = \cos \psi \cdot k - \sin \psi \cdot j. \end{split}$$

Therefore, $Ad_A = R_x$.

Suppose that $Ad_A = Ad_B$ then $ACA^{-1} = BCB^{-1}$ for all $C \in SU(2)$, in other words, $B^{-1}A$ belongs to the center of SU(2). Since the center of SU(2) consists of $\pm E$, we get $B = \pm A$. Hence Ad is a double cover.

Algebraically, the homomorphism $SU(2) \to SO(3)$ can be described as the quotient map of SU(2) by its center $\mathbb{Z}/2 = \{\pm E\}$. Topologically, it is the standard double cover $S^3 \to \mathbb{R}P^3$ after the identification $SO(3) = \mathbb{R}P^3$.