Lecture 13
The group SU(2)

The Lie group SU(2) consists of all complex (2 x 2)-matrices A such that AAT = E
and det A = 1. As amanifold, it can be identified with the 3-sphere S3 as follows: Any
matrix A € SU(2) is invertible, therefore, the condition AAT = E can be rewritten in

the form AT = A~ L. If
) and A'lz( v ub),
—U a

A=(a b) then ATz(
u v

so the condition AT = A~! is equivalent to v = @ and u = —b. Thus any A € SU(2)
is of the form '

a

This provides the identification

SR
< R

QO

) with a,beC, detA=lal*+|b|* = 1.

SUQR)={(a,b) e C* | |af> + b)* =1} = §°.

On the other hand, SU(2) can be identiﬁe\d with the Lie group Sp(1) of unit quater-
nions. Recall that the norm |q| of a quaternion g = x + yi + zj + wk € H is defined by
the formula |g|> = x2 + y? + 22 4+ w?, orby |q|> = g where § = x — yi — zj — wk.
One can easily check that | pg| = |pliq|. The group Sp(1) consists of all quaternions
g with |q| = 1. Since |x + yi + zj + wk|? = x2 4+ y? + 22 + w?, the group Sp(1) is
topologically a 3-sphere. The identification Sp(1) = SU(2) at the level of Lie groups
is given by the formula

) . (13.1)

The unit quaternions 1, i, j, k are identified via (13.1) with the following matrices:

10 . (i © . 0 1 0 i
=r=(o8) =00 2) = (e) +=(00)

Let U(1) = S! be the group of unit complex numbers. Then the identification (13.1)
provides a canonical inclusion U(1) — SU(2) such that

. &Y 0
el(p > ( 0 e_i¢ ) ®
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Theorem 13.1. The group U(1) C SU(2) is a maximal commutative subgroup in
SU(2). All other maximal commutative subgroups in SU(2) are of the form C~1.U(1)-C
where C € SU(2).

This is an easy exercise involving the quaternions. We refer to the elements of
U(1) € SU(2) as complex numbers.

The trace of a matrix defines a function tr: SU(2) — [-2,2], A — tr A. Note
that £ E are the only two matrices in SU(2) with trace 2, the rest of the group satisfies
-2 <trA<?2. .

Theorem 13.2. Two matrices, A and A’, in SU(2) are conjugate if and only if tr A =
tr A,

Proof. The = direction is obvious. Consider a matrix A € SU(2) as a linear operator
on C2. Since C is algebraically closed, A has an eigenspace with eigenvalue A € C.
Choose a unit vector ¢ = (x, y) in this eigenspace, and let

_(* —V 1Y («x
cu..(y i)eSU(Z) so that C(O)_(y)
C"AC('(I))-'—-(}(;) or C‘IAC=(}6 ‘;)

for some «, B € C. Since ClAC e SU(2), we have that

then

x
0 A

CT'AC = ( ) with detC'AC = AP =1.

Thus any matrix A € SU(2) can be conjugated in SU(2) to a matrix of the form

_ e 0
(eo e—i¢) (132)

whose trace equals 2 cos ¢. The trace uniquely defines the angle ¢ up to sign. Since

e 0\ _[0 -1 e’ 0 0 1
0 ¢/ L1 o0 0 ei® -1 0 v
we are finished. ) O

In the qﬁaternionic language, this theorem asserts that any unit quaternion is conju-
gate to a complex number ¢'?, 0 < ¢ < 7. Thus, the conjugacy classes in SU(2) are in
one-to-one correspondence with the sets tr~!(c) with =2 < ¢ < 2. The equation

tr( _"E 2 )=c (13.3)
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is equivalent to the equation 2Rea = c. The latter defines a hyperplane in R* = H
whose intersection with SUQ2) = $3 ¢ R*is tr=!(c). Thus tr l(c) = $? if -2 <
¢ <2, and tr-1(=2) = {—E}, r~1(2) = {E). Schematically, the conjugacy classes
in SU(2) can be pictured as the vertical line segments in Figure 13.1, each segment
representing a copy of $2, which intersects the circle U (1) of unit complex numbers in
exactly two points ¢'?, unless e'¢ = +1.
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Figure 13.1

At the level of linear spaces, the Lie algebra su(2) of the group SU(Z) can be
identified with the tangent space at 1, so su(2) = 71 SU(2). To describe su(2) in
terms of matrices, we consider the exponential map exp: T1 SU(2) — SU(2) given by
a — e%. Then o € su(2) if and only if exp(a) € SU(2), which implies the following:

dete® = = 13 tra =0,

@ = ' a+a’ =0.

Thus, su(2) is the 3-dimensional linear space of skew-hermitian matrices with zero
trace. All such matrices are of the form '

a=( ta .b), acR, beC.

b —ia

Ifb=u+ivwithu,veRthen

ia u+iv y i 0 01 0 i
(—u+iv _ia )‘“(0 —i)+“(—1 o)*”(i 0)

corresponds to the quaternion ai + uj + vk. Therefore, su(2) can be thought of as
consisting of purely imaginary quaternions. The Lie algebra structure on su(2) is given
by the Lie bracket /

ler, B] = af — Ba. : (13.4)
Theorem 13.3. The exponential map provides a diffeomorphism
exp: B, (0) - SUQ2) \ {—E}

where By (0) C su(2) is the open ball of radius 1t centered at the origin.
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Proof. As 828 = ge“g~! we only need to show that the map exp: (—in, i) —

ST\ {—=1}, ip > €'¢, is a diffeomorphism. The latter is obvious, see Figure 13.2. [

Remark. The following is a useful formula for evaluating the exponential map. Let g
be a purely imaginary quaternion of unit length, so that Reg = 0 and |g|?> = 1. Then,
for any real number 6,

0

e?” = cosf + g - siné.

This can be seen as follows. Siace Re g = 0, there exists a unit quaternion u such that
g = uiu~'. Then

- | : -1 : _ . e - :
e9 = 40 = T = oi¥y =1 = y(cos 6 +isin@)u~! = cosf +q - sinb. ,

" The tangent space 7, SU(2) at g € SU(2) can be identified with the image of su(2)
under left translation by g:

(Lg)+(SU(2)) = T, SU(2),
where L, (u) = g - u.

Example. The space 7; SU(2) consists of the matrices of the form

(5 e)=(o (5 a)=(5% 2

The group SU(2) acts on itself by conjugation,

A Ady: SUQ2) — SU2), Ada(B) = ABA™L.

r

For any A, the derivative dy Ads of Ad, at 1 gives an action of SU(2) on its Lie algebra,
called again Ady,

A Ady: su2) > su2), Ada(e) = AaA™ L



Note that Ad, is a Lie algebra homomdrphism with respect to the bracket (13.4). Thus
we have a homomorphism

Ad: SUQ2) — Aut(su(2)), A+ Ada. (13.5)

The derivative of this map at 1 € SU(2) can be computed as follows: choose o € su(2),
then, up to order g2,

Adi4ea(B) = (1 +ea)B(1 — ca) = B + e(af — Ba).

Denote by ad,: su(2) — su(2) the operator ad,(8) = [«, B], then Adj+:(B) =
(1 + £ ady)(B) up to order £2. Thus, (d; Ad)(«r) = ad,.

Theorem 13.4. Themap (13.5) is well-defined as a Lie group homomorphism SU(2) —
SO(3). It is the universal (double) cover of SO(3), hence w1 SO(3) = Z/2.

Proof. The map (13.5) is a homomorphism; Ad(AB) = Ad(A) Ad(B) because
Adap(x) = ABx(AB)™! = A(BxB~1)A™! = Ads Adp(x). Since su(2) = R3
as a linear space, one can think of Aut(su(2)) as a subgroup of GL3(R). Then the map
(13.5) is well-defined as a homomorphism Ad: SU(2) — GL3(R).

The Euclidean dot-product in R3 = su(2) can be described by the formula

u-v= —% tr(uv) = —Re(uv)

depending on the realization of su(2) by either matrices or quaternions. One can easily
check that Ad4 preserves the dot-product: -

(Adau) - (Adav) = —= tr(AuA~! AvA~l)

triun)
tr(uv)

K3

4 .
“w e

N =N =

N
Therefore, Ad(SU(2)) C O(3), the orthogonal group of R3. Since SU(2) is connected,
the image of SU(2) should belong to the connected component of the identity in O(3),
that is, to SO(3).

The map SU(2) — SO(3) is surjective. Each matrix from SO(3), thought of
as acting on R3, is a product of rotations about the coordinate axes. Thus to show
surjectivity we only need to show that the matrix

1 0 0
Ry=]| 0 cosyy —siny
0 siny cosy

of rotation about the x-axis through an angle ¥ belongs to the image of Ad. The
rotations with respect to the other two coordinate axes can be handled similarly. Let

¢ =1¥/2and
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then
Ada() = €%ie” % =,
Ada(j) = €'Cje ' =¥ 9j =cosy - j+siny -k,
Ady (k) = €'%ke™® = %%k =cosy -k —siny - .
Therefore, Ads = R;. _
Suppose that Ady = Adp then ACA~! = BCB~! for all C € SU(2), in other

words, B~ A belongs to the center of SU(2). Since the center of SU(2) consists of
+FE, we get B = +A. Hence Ad is a double cover. a

Algebraically, the homomorphism SU(2) — SO(3) can be described as the quotient
map of SU(2) by its center Z/2 = {£E}. Topologically, it is the standard double cover
$3 — RP3 after the identification SO(3) = 11§P3.

2



